Telegram Group & Telegram Channel
Forwarded from AI Pulse (Mohammad)
شرکت متا نسل چهارم از مدل‌های زبانی Llama را معرفی کرده که با توانایی‌های چندوجهی و پشتیبانی از کانتکست بسیار بلند، رقیب بسیار جدی‌ای برای مدل‌های اوپن سورس محسوب میشن.

در این مجموعه سه مدل معرفی شده‌: Llama 4 Scout، Llama 4 Maverick و Llama 4 Behemoth. دو مدل اول به صورت Open Weight عرضه شدن و برای استفاده در پلتفرم‌هایی مثل WhatsApp، Messenger، Instagram Direct و نسخه وب Meta AI در دسترس قرار گرفتن.

مدل Scout با ۱۷ میلیارد پارامتر فعال و ۱۶ متخصص، قوی‌ترین مدل توی کلاس خودش به‌شمار میاد و با وجود توانایی‌های چشمگیر، روی یک GPU از نوع H100 اجرا می‌شه. این مدل با داشتن پنجره کانتکست ۱۰ میلیون توکنی، عملکردی بهتر از مدل‌هایی مثل Gemma 3 و Gemini 2.0 Flash-Lite ارائه می‌ده.

مدل Maverick هم که از همون تعداد پارامتر فعال اما با ۱۲۸ متخصص بهره می‌بره، در تست‌های گسترده از GPT-4o و Gemini 2.0 پیشی گرفته و با مدل‌هایی مثل DeepSeek v3 در زمینه‌های استدلال و کدنویسی رقابت می‌کنه؛ اون هم با نصف تعداد پارامتر فعال.

قدرت این مدل‌ها تا حد زیادی مدیون مدل Behemoth هست؛ یک مدل بزرگ ۲ تریلیونی با ۲۸۸ میلیارد پارامتر فعال که نقش "معلم" رو در فرایند آموزش ایفا کرده. Behemoth در بنچمارک‌های ریاضی، کدنویسی و زبان‌های مختلف عملکردی بهتر از مدل‌های شاخصی مثل GPT-4.5، Claude 3.7 و Gemini 2.0 Pro داشته. هرچند هنوز به‌طور کامل عرضه نشده، اما متا وعده داده به‌زودی اطلاعات بیشتری درباره‌ی اون منتشر کنه.

در طراحی این مدل‌ها، معماری Mixture of Experts به‌کار گرفته شده که با فعال‌سازی بخشی از پارامترها به‌ازای هر توکن، هم بازدهی محاسباتی رو افزایش داده و هم کیفیت مدل رو نسبت به مدل‌های متراکم بهبود داده. Llama 4 همچنین به‌صورت چندوجهی طراحی شده و می‌تونه همزمان ورودی‌های متنی و تصویری رو پردازش کنه. در فاز آموزش، از داده‌های متنی، تصویری و ویدیویی در مقیاس بالا استفاده شده و تکنیک‌های جدیدی مثل MetaP برای بهینه‌سازی هایپرپارامترها به‌کار رفته.

در مرحله پس‌آموزش، متا از روش‌های جدیدی مثل یادگیری تقویتی آنلاین و بهینه‌سازی مستقیم ترجیحی برای بهبود مهارت‌های مدل در استدلال، مکالمه و چندوجهی‌بودن استفاده کرده.

مدل Maverick با بهره‌گیری از این روش‌ها، عملکرد چشمگیری در درک تصویر، تولید متن، پاسخ به پرسش‌های بصری و وظایف پیچیده نشون داده. مدل Scout هم با وجود حجم کمتر، در زمینه‌هایی مثل کدنویسی، پردازش کانتکست بلند، و درک تصویری، نتایجی بهتر از تمام نسل‌های قبلی Llama ارائه می‌ده.

در نهایت، متا تأکید کرده که این مدل‌ها با بالاترین استانداردهای ایمنی توسعه داده شدن. ابزارهایی مثل Llama Guard، Prompt Guard و سامانه‌ی تست GOAT برای جلوگیری از خروجی‌های نامناسب یا سؤاستفاده از مدل‌ها ارائه شده و توسعه‌دهندگان می‌تونن این ابزارها رو متناسب با نیاز خودشون تنظیم کنن. همچنین تلاش‌هایی هم برای کاهش سوگیری‌های سیاسی و اجتماعی در پاسخ‌های مدل صورت گرفته تا Llama 4 بتونه دیدگاه‌های مختلف رو به‌درستی درک و بیان کنه.

@aipulse24



tg-me.com/learning_with_m/146
Create:
Last Update:

شرکت متا نسل چهارم از مدل‌های زبانی Llama را معرفی کرده که با توانایی‌های چندوجهی و پشتیبانی از کانتکست بسیار بلند، رقیب بسیار جدی‌ای برای مدل‌های اوپن سورس محسوب میشن.

در این مجموعه سه مدل معرفی شده‌: Llama 4 Scout، Llama 4 Maverick و Llama 4 Behemoth. دو مدل اول به صورت Open Weight عرضه شدن و برای استفاده در پلتفرم‌هایی مثل WhatsApp، Messenger، Instagram Direct و نسخه وب Meta AI در دسترس قرار گرفتن.

مدل Scout با ۱۷ میلیارد پارامتر فعال و ۱۶ متخصص، قوی‌ترین مدل توی کلاس خودش به‌شمار میاد و با وجود توانایی‌های چشمگیر، روی یک GPU از نوع H100 اجرا می‌شه. این مدل با داشتن پنجره کانتکست ۱۰ میلیون توکنی، عملکردی بهتر از مدل‌هایی مثل Gemma 3 و Gemini 2.0 Flash-Lite ارائه می‌ده.

مدل Maverick هم که از همون تعداد پارامتر فعال اما با ۱۲۸ متخصص بهره می‌بره، در تست‌های گسترده از GPT-4o و Gemini 2.0 پیشی گرفته و با مدل‌هایی مثل DeepSeek v3 در زمینه‌های استدلال و کدنویسی رقابت می‌کنه؛ اون هم با نصف تعداد پارامتر فعال.

قدرت این مدل‌ها تا حد زیادی مدیون مدل Behemoth هست؛ یک مدل بزرگ ۲ تریلیونی با ۲۸۸ میلیارد پارامتر فعال که نقش "معلم" رو در فرایند آموزش ایفا کرده. Behemoth در بنچمارک‌های ریاضی، کدنویسی و زبان‌های مختلف عملکردی بهتر از مدل‌های شاخصی مثل GPT-4.5، Claude 3.7 و Gemini 2.0 Pro داشته. هرچند هنوز به‌طور کامل عرضه نشده، اما متا وعده داده به‌زودی اطلاعات بیشتری درباره‌ی اون منتشر کنه.

در طراحی این مدل‌ها، معماری Mixture of Experts به‌کار گرفته شده که با فعال‌سازی بخشی از پارامترها به‌ازای هر توکن، هم بازدهی محاسباتی رو افزایش داده و هم کیفیت مدل رو نسبت به مدل‌های متراکم بهبود داده. Llama 4 همچنین به‌صورت چندوجهی طراحی شده و می‌تونه همزمان ورودی‌های متنی و تصویری رو پردازش کنه. در فاز آموزش، از داده‌های متنی، تصویری و ویدیویی در مقیاس بالا استفاده شده و تکنیک‌های جدیدی مثل MetaP برای بهینه‌سازی هایپرپارامترها به‌کار رفته.

در مرحله پس‌آموزش، متا از روش‌های جدیدی مثل یادگیری تقویتی آنلاین و بهینه‌سازی مستقیم ترجیحی برای بهبود مهارت‌های مدل در استدلال، مکالمه و چندوجهی‌بودن استفاده کرده.

مدل Maverick با بهره‌گیری از این روش‌ها، عملکرد چشمگیری در درک تصویر، تولید متن، پاسخ به پرسش‌های بصری و وظایف پیچیده نشون داده. مدل Scout هم با وجود حجم کمتر، در زمینه‌هایی مثل کدنویسی، پردازش کانتکست بلند، و درک تصویری، نتایجی بهتر از تمام نسل‌های قبلی Llama ارائه می‌ده.

در نهایت، متا تأکید کرده که این مدل‌ها با بالاترین استانداردهای ایمنی توسعه داده شدن. ابزارهایی مثل Llama Guard، Prompt Guard و سامانه‌ی تست GOAT برای جلوگیری از خروجی‌های نامناسب یا سؤاستفاده از مدل‌ها ارائه شده و توسعه‌دهندگان می‌تونن این ابزارها رو متناسب با نیاز خودشون تنظیم کنن. همچنین تلاش‌هایی هم برای کاهش سوگیری‌های سیاسی و اجتماعی در پاسخ‌های مدل صورت گرفته تا Llama 4 بتونه دیدگاه‌های مختلف رو به‌درستی درک و بیان کنه.

@aipulse24

BY Learning With M







Share with your friend now:
tg-me.com/learning_with_m/146

View MORE
Open in Telegram


Learning With M Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Learning With M from sa


Telegram Learning With M
FROM USA